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SIGNIFICANCE AND EXPLANATION

The mathematical equation studied here has been considered as a model for ;
. population genetics, combustion, and nerve conduction. A common feature to
all of these phenomena is the existence of traveling wave solutions. These
may correspond, for example, to the spread of an advantageous gene through a
population or the propagation of electrical impulses in a nerve axon. Another
4 common feature is the existence of a threshold phenomenon. 1In the nerve, for
example, a small initial stimulus will not trigger an impulse. If the initial
stimulus is greater than some threshold amount, however, a signal will
propagate down the axon. In this case the signal quickly assumes a fixed
shape and travels with constant velocity. Physiologically, it has been
demonstrated that this shape and velocity is independent of the initial
' stimulus, as long as the stimulus is above threshold. ‘
In this report we demonstrate that the mathematical model under ;
:i consideration does indeed exhibit a threshold phenomenon. We also study how

initial stimuli evolve into traveling wave solutions.
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A FREE BOUNDARY PROBLEM ARISING FROM A BISTABLE REACTION-DIFFUSION EQUATION

David Terman

Section 1. 1Introduction

In this paper we consider the pure initial value problem for the equation
(1.1) Ve = Vet BV, (xt) @R xR
the initial datum being v(x,0) = ¢(x). We assume that f£(v) = v - H(v - a) where
H 1is the Heaviside step function, and a € (0,%). This equation, but with smooth
£, has many applications and has been studied by a number of authors (see (1], [3],
[6]1). Equation (1.1) is also a special case of the FitzHugh-Nagumo equations:

(1.2) Ve = Vyy + (V) -~ w

w, = e(v = yw, €>»0, y>0,

which were introduced as a model for the conduction of electrical impulses in the nerve
axon. Note that (1.1) can be obtained from (1.2) by setting €e=0 and w =0 in

R x R+. In their original model, FitzHugh [4] and Nagumo, et al., (8] chose

f(v) = v(1 - v)(v - a). McKean [7] suggested the further simplification

f(v) = v = H(v - a). The results of this paper will be needed in a forthcoming paper
when we treat the full system (1.2).

Our primary interest is to study the threshold properties of equation (1.1). That
is, if the initial datum ¢(x) 1is sufficiently small then one expects the solution of
equation (1.1) to decay exponentially fast to zero as t + =, This corresponds to the
biological fact that a minimum stimulus is needed to trigger a nerve impulse. In this
case we say that ¢(x) is subthreshold. One expects, however, that if ¢(x) is
sufficiently large, or superthreshold, then some sort of signal will propagate.
Threshold results for equation (1.1) with smooth f have been given by Aronson and

Weinberger (1] Fife and McLeod [3] showed that if the initial datum is super-
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threshold, then the solution of equation (1.1), with emooth £, will converge to a
traveling wave solution.

Throughout this paper we assume that the initial datum, ¢(x), satisfies the
following conditions:

(a) wix) eclm ,

(b) ¢(x) @ [0,1] in R,

(c) v(x) = ¢(-x) in R,
(1.3) (d) ¢'x) <0 in R,

(@) w(xo) = a for some X3 > 0,

(£) v"(x) is a bounded, continuous function except possibly at |Ix| = X .
This last condition is needed in order to obtain sufficient a priori bounds on the
defivatives of the solution of equation (1.1).

Note that in some sense xq determines the size of the initial datum. We expect,
therefore, a signal to propagate if xq is sufficiently large. 1In order to be more
precise we consider the curve g(t) given by
(1.4) s(t) = sup{x:vix,t) = a} .

We say that the initial datum is superthreshold if s(t) is defined in r" ana
lim s(t) = +», In this paper we show that if Xy is sufficiently large then w(x)
™
l:’indeed superthreshold.

Note that because f(v) is discontinuous we cannot expect the solution of
equation (1.1) to be very smooth. By a classical solution of equation (1.1) we mean
the following:

Definition: Let S, = R x (0,T) and Gy = {{x,t) €S, v(x,t) # a}. Then v(x,t) 1is
said to be a classical solution of the Cauchy problem (1.1) in Sq if

(a) v, along with v are bounded continuous functions in ST,

xl

{b) in GT' v and vy are continuous functiona which satisfy the equation

Xx

Ve = Ve * fv)

(c) 1iim v{x,t) = ¢(x) for each x € R.
t+0
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We can now state our primary result.

Theorem 1.1: Chooge a @ (0,%). Then there exists a positive constant 6 such that

if ¢(x) satisfies the conditions (1.3) with X3 > 6, then equation (1.1) processes a
classical solution in R x R+, and v¢(x) 1is superthreshold. Furthermore,

s(t) € C1(l+), and s8'(t) is a locally Lipschitz continuous function.

Note that for the model we are considering it is trivial to give sufficient
conditions for the initial datum to be subthreshold. 1In particular, if ¢(x) < a for
each x € R then, from the maximum principle (see [9], page 159), v(x,t) < a in
R x R'. Hence v satisfies the equation

v, =v,.  -v in Rx®R .
t xx

Prom this it follows that Iv(-,t)lﬂ +0 as t + », and the initial datum is

subthreshold.

We prove Theorem 1.1 by studying the curve sg(t) given by (1.4). Note that if
the initial datum ¢(x) satisfies the conditiona (1.3) then there must exist some

positive time T such that in the interval [0,T], s(t) satisfies the integral

equation
@ t s( 1)
(1.5) a-[ Ris(t) - g,)p(E)dg = [ ar | K(s(t) - &t - 1)d¢
- 0 -s(1)
-t -x2/4t
where K(x,t) = —%7—1/ e is the fundamental solution of the linear differential
272 ¢’2

equation wt = wxx - J» Here we give a formal explanation of why this is true. We
then show how to construct a solution of the initial value problem {1.1) given a smooth
solution of the integral equation (1.5).

From assumptions 1.3(c) and (d) we expect that vx(x,t) < 0 in RY x R*. In this

case s{t) will be a well defined, continuous function for some time, say t € [0,T].

-3~
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It also follows that v > a for |x| < s(t) and v < a for |x| > s(t). Let xg be

the indicator function of the set G = {{x,t):v(x,t) > a; 0 < t < T}. Then, for

Ixl # s{t), v(x,t) satisfies the inhomogeneous eguation

(1.6) Ve ® Ve - U * Xg )
with initial datum v(x,0) = ¢(x). Formally the solution of (1.6) can be written as
® t s( 1) i

(1.7 vix,t) = [ K(x - g, t)e(g)af + [ ar [ K{x - £, - 1)4E .
- 0 ~-8( 1)

Setting x = s(t) in (1.7) we obtain (1.5).

Lemma 1.2: Suppose that s(t) is a continuously Aaifferentiable function which
satisfiez the integral equation (1.5) in ({0,T). Then the function v(x,t) given by

(1.7) is a classical solution of the initial value problem (1.1) in R x {0,T].

Proof: Setting x = s(t) in equation (1.7) and subtracting the resulting equation
from (1.5) we find that v(s{(t),t) = a in [0,T}. Differentiating both sides of (1.7)

ve s2e that for x # s(t), v(x.t) satisfies the differential equation Ve = Ve £(v)

in ® x (0,T]. It also follows from (1.7) that 1lim v(x,t) =¢(x) for x @ R. We now
t+0

show that v(x,t} is differentiabie whenever x = s(t).

Pirst assume that |E| < s(t). Then v(E,1) satisfies the differential equation

v -V +v=1,.

k3 112
Multiplying both sides of this equation by K(x - £,t - 1) and using the fact that

K_+ K - K =0 we find that
T EE

(Kv)T - (KVE)E + (KEV)E =K .

Asguming that |x] < s(t) we integrate this last equation for =-s(rt) < £ < s(1),

€< 1T<t=-¢ and let € + 0 to obtain:

) -4~




i *o t
vix,t) - [ K(x - £,)9(E)dE - [ K(x - a(1),t ~ 1)as'(1)d1
-X 0
0
t t -
- [ ®(x+s(0,t - vas' (DAt - [ K(x - s(1),t - v ls(n,ndr
0 0
(1.8a) & . £
+ [ K(x+a(n,t- v (-s(1) ,Dar + [ aKk (x - s(1),t - 1)dr
0 5 0o &
t t 8( 1)
-[.‘ -f ak, (x + s(1),t - ndr = | at ] K{x - E,t - T)4E .
0 0 -8{( 1)
E Next assume that £ > s(t). Then v(,T) satisfies the differential equation:
v‘ - vEE + v = 0, Multiplying both sides of this equation by K(x - §,t - 1} we find
that

(Kv)T - (KVE)E + (x;v)g =0 .

We integrate this equation for s(1) < £ < ®, ¢< 1<t ~-¢ and let € +0 ¢to

obtain
« t
-] ®ix-Et)e(0)AE + [ Kix - s(1),t = T)as'(1)dT
=%, 0
(1.8b)
t + t
+ [ K(x - s(1),t - r)vz(s(t) s0drt - | axe(x - 8{(1),t - T)dT =0 .
0 0
Similarly, for £ < s(t) we obtain
"o t
-/ Xx-¢gt-ndE+ [ Kix+ 8(v,t ~ tlas' (AT
- 0
(1.8¢c)
t - t
o - [ xix ¢ s(1),t - Dv (-s(1) ,T)dT + [ ak_(x + s(1),t - T)d1 =0 .
! 0 ¢ o °

Adding (1.8a), (1.8b), and (1.8c), and using (1.7) we find that for t e (0,T)

T AW 2 i SIS T




t

[ [xtx - s(D,t - ﬂ[vél(ﬂ+.ﬂ - v (s(n , 0]
0

(1.9) £

+R(x + s(1),t - DIv(-s(n’,n = v (-s(n, D] )Jar=0 .

£ £

However, because of assumption (1.3c) it follows from equation (1.7) that
vix,t) = v(-x,t) in R x (0,T). Therefore, (1.9) can be rewitten as

t
[ IXK(x = s(0),t =~ 1) ~ K{x + s(1),t - V(v (s(n',0 - v (s(n ", nlaT =0 .

0 3 (1
From this it follows that v, (s(t)”,t) = vx(s(t)+,t) for each t @ (0,T). /77

In Section 2 we present some notation and prove a few preliminary results which
a;e needed throughout the rest of the paper. In Section 3 we show that for some time
T there exists a solution of the integral equation (1.5) in [0,T]. 1In Section 4 we
prove that the solution of (1.5) is unique among Lipschitz continuous functions, and in
Section 5 we prove that the solution of (1.5) is continuously differentiable. 1In fact
we show that s8'(t) is locally Lipschitz continuous. Finally, in Section 6 we
demonstrate that if x; is sufficiently large, then the initial datum, ¢(x), 1is

superthreshold.
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Section 2. The Operators ¢ and O

We first introduce the following notation.
Throughout this paper we assume that y{x,t) is the solution of the linear

differential equation:

(2.1 Yo = b TV

in R x RY with initial conditions

$(x,0) = v(x) .

® -t 2
Note that y(x,t) = | K(x = E,t)9(E)Af where K(x,t) = —p—, e * /4%,
“e 2072 2

Now suppose that a(t) is a positive, continuous function defined for t € [0,T].

Por values of t, and t which satisfy 0 < to < t <T we define the operators:

t al 1)
da(e) = [ art [ K(al(t) = E,t - DAL,
0 ~a(1)

Oto(a)(t) = &(a)(t) - 0(0)(t0) '
O(a)(t) = a - yYlalt),t) ,

et (a)(t)

8(a)(t) - B(a)(t,)
0

MM%L%)-MMHLH).
Note that s(t) is a solution of the integral equations (1.5) for t e [0,T] if and
only if

Gto(s)(t) = °t (8) (%)

0

for all values of tq and t such that 0 < to <t <T.

Definition: Suppose that a(t) is a positive uniformly Lipschitz continuous function

defined in [0,T]. We define a(t) to be a lower solution in ([0,T] if

8(a)(t) » ©(a)(t) in [(0,T}I. TIf &(a)(t) < B(a)(t) 4in [0,T] then a(t) is said

to be an upper solution in [0,T}.

In Theorem 4.1 it is shown that if a(t) and B(t) are respectively lower and

upper solutions in [(0,T] then a(t) < B(t) in (0,T]. This implies that the

-7-
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solution of (1.5) is unique among uniformly Lipschitz functions. We prove threshold
results by showing that if Xq is sufficiently large then some vertical line

21(t) = x 1id a lower solution in R'. This will imply that s(t) » x in R'. Using
this preliminary result we then show that 1lim g(t) = », and hence the initial datum

>0

is superthreshold. 1In the rest of this section we prove those properties of the
operators O and ¢ which are needed for the proof of Theorem 1.1. We assume
throughout this section that a(t) and B(t) are positive continuous functions
defined on an interval (0,T}.

Lemma 2.1: Assume that for ty <ty a(to) < B(to), and a(t1) > B(t1)- Then

a (a)(t1) > Gt (B)(t‘).

t
0 0
Proof: Recall that 8t fad(t) = plalto),tg) - ¥lalt,),t,) where y(x,t) is the
0
solution of the linear differential equation
L W

with initial datum ¢(x,0) = ¢(x). From assumption (1.3)(d) and the comparison theorem
(see [9], page 159) applied to wx(x,t) it follows that yx(x,t) <0 in R x R,
Therefore, w(a(to).to) > W(B(to),to) and w(q(t1),t1) < w(B(t1,t1). From this the
proof of the lemma follows immediately. ///

Lemms 2.2: Assume that af(t) » B(t) in [O,tol, alt) > B(t) for some

t e (0,t;), and a(to) = B(to). Then Q(Q)(to) > 0(8)(to)-

Proof: This is an immediate consequence of the definition of &. 17/

Lemma 2.3: Assume that a(t) € C1(0,T). Then d(a)(t) € c1(o,T) and

* t

(2.2) Ma)'(e) = [ X{alt) - ££)AE + [ K(alt) + alD,t - T)[a' (D +

- 0
*o

t
+a'(t))dr + [ K(a(t) = a(D),t - Ta' (1) ~ a'(t)ldT »
0




0

Proof: Note that
Sla)t (L) = limle [8(a)(t + &) - d(a)(t))
* €+0
1 t+e al 1)
= lm - [ at [  KR(alt + e)-E,t + € - 1)dE
e+0 0 -a{ 1)
t al 1)
- [ atf Klalt) - £t - DAL
0 -a{ 1)
1 t al t+e)+al(t)-a(t+e)
= lim | at | K(alt) - E,t ~ 1)dE
€+0 -€ ~a{)+a(t)~alt+e)
' t al 1)
1 - [ atf K(alt) - £t - 1AL
0 =al1)
1 0 al tHe)+alt)-alt+e)
=um— | ar | K(alt) - E,t - T)dE
e+0 -€ ~a{1)+alt)-alt+e)
t ~alT)
+ [ atr | K(alt) - E,t - DAL
0 —a{T)+a(t)-alt+e)
t al t+e)+al(t)~alt+e)
+ [ ar | K(alt) = £t - Ddg| .

al1)

Pagsing to the limit we obtain (2.2).

datum, ¢(x),

positive constants 6 and r

the vertical line 11(t)

broken up into a few lemmas.,

there to exist lower and upper solutions.
satisfies the conditions (1.3).
such that if

X 1is a lower solution on

/7/

We conclude this section by finding sufficient conditions on the initial datum for

We assume throughout that the initial

)

r".

We first wish to prove that there exist
> 8 then for some x @ (xg = Toxg)

The proof of this result is

SOVORIR
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t 0

Lemma 2.4: Let &(x)(t) = [ dt [ K(x -£,t-T)4E and fix c @ (o,%- a). There
0 -X

exists a positive constant 6(r) such that if x_ > @8(g), then

0
Blx ) (t) + 8(x))'(t) >a + e in R

Proof: Let ‘e = a+ ¢

t, = -log(% - ae)

and

8(e) = max(1,2t° 109

] Assuma that x0 ? 8(e). The proof will be broken into two steps. First assume

that t e (O,to). Then, using 2.2,

xo Xo

t
¥xy ) (B) + Blx ) (t) = [ ar | K(x ~E,t-T)AE + I K(x -E,t)dE

0 --x0 -x0

t *9 *a

= [ at [ Rix,-fe-mar+ [ Kix -g,t)aE
0 -0

{2.3) — x
t 0 0
- [({ ar .I.,, K(x)~E,t-T)AE + L K(xy-E,t)ag]
; t “*o o
=z- [({ ar [ K(x -E,t-1)dE + .,{ K(x,-£,t)dE] .

We now ghow that for 1 e (0,t)

-x,

(2.4) J Kix -E,t-1)AE < & .
-
Prom this and (2.3) it will follow that for t € (O,to),

. 1. 1.
o(xo)(c) + ¢(xo) (t) > 3 (1 +¢)6 > 3 (1 + to)s > a_ .

-~




Now (2.4) is true because for t1 € [0,t):

2
-xo -(t- ) -xo - (x—o-i
[ Rixy-E,t-1ag = ~—°1/—‘—17 [ e HET 4

- 292 (t~1)2 =

(x_~E)

~(t-1) Xy - -0 "

< -2 4(t-1) aE .

21/2 (1:'-1)/2 -

The last inequality is true because Xq > 8(e) » 1. Therefore,

x 1
(] Vo -x_/2(t-1)
[ ®ix -E,t~n)dEf e T, 0 e (T
-X "
(]
v .
) 2{‘—/29 x0/2t
ﬂ/z
1
2:0/2 -8(e)/2t
Y~ e
ﬂ/z
< 8.
Now assume that ¢t > to. Then,
o *o
¥x ) (£) + x )] > &(x ) (tn) =({ ar L Kxg-2,t -1 4
%o “¥o
- [ At [ Rlx~E.tgmmAE .
0 -00
Since
% % f-a 0
[ et [ Rixp-Ety-vdE= ——,
0 -0
we conclude from (2.4) that
1 - e-to
xg) (L) + Bxpd'(t) > ———— -8t >a .
~11=~

DU SRR -
e AR

e BRI L Y m— s —— . o -
j - . v . NN p L . PP 5 o g - g .




1
1 4a 2
Lemma 2.5: Fix ¢ @ (0,5 - a) and let 6= 9(e). Let 6, =6+ (E') and

a for |x| < 8

0 for |x| > 81
hc(x) =

a-S(x-0? for xe (8,0
€ 2
a-7 (x + 6) for x € (-61,-6) .
Agssume that: a) ¢i(x) > hs(x) for x| < x,
and b) ¢({x) > he(x) =0 for |[x| > Xy o

Then there exists x € (6,61) such that the line 21(t) = x 1s a lower solution in
r'.
Proof: Because of our assumptions on ¢(x) there exists a function v¢,(x) such that
(a)  ¢,(x) € C (==, )
(b) he(x) < ¢1(x) < ¢(x) for |x| < X,
(e} h (x) <o lx) <plx) for [x| > x
(2.5) (d) ¢j(x) <0 for x>0

(e) ¥4(x) = ¢.(-x) in R !

€
(£f) vy(x) < a+ 3 in R . ‘
g i e
(g) ¢3(x) > - 2 in R,

From these assumptions it follows that ¢1(§) = a for some unique constant

X > 8. Llet w1(x,t) be the solution of (2.1) with initial datum ¢1(x). Since
v(x) > ¢1(x) in R' it follows from the maximum principle that {(x,t) > w1(x,t)
in R x B'. We show that a - ¥, (x,t) < &(x)(t) for t @ R. From this it follows
that a - g(x,t) < a - P(x,t) < &(x)(t) and hence the line 2,(t) is a lower solution
in wr'.

We wish to show that a - w1(;,t) < d(x)(t), or ¢1(;,t) >a - 8(x)(t) for
t e R". Let g(x,t) = v,(x) - &(x)(t). We show, using a comparison argument, that
w1(x,t) » g{x,t) in R x RY. since ¢1(§) = a this certainly implies the desired
result.

In order to apply the maximum principle note that

g(x,0) = ¢,(x) = w,(x,o) '

-12-




and
Je = I ¥ I = -[000(E) + 00 (E)] + 0 00 -w (x)
[ €
C-(ate) + (A + ) +5=0 =g = ¥ *¥ -
In this last calculation we used Lemma 2.4 and assumptions 2.5(f) and (g). From the
maximum principle (see [9), page 159) we conclude that w'(x,t) » g(x,t) in R x ll",
and the result follows. 7//
Lemma 2.6: There exists positive congtants r and 6 such that if the initial
datum ¢(x) satisfies (1.3) with Xy > 0, then, for some xe (xo - r,x3), the line
1.1(t) = X 1is a lower solution in R+.1
/2
Proof: Choose ¢ € (0,% -a), r= (_:_a) , and 6 = 6(¢) + r. The result now follows
from the previous lemma. /77
We now prove the existence of an upper solution.

lLemma 2.7: There exists a linear function 2.2(1:) such that 12(0) = x

o and !.z(t)

is an upper solution on [o,%].
Proof: Recall the function Y(x,t) defined to be the solution of equation (2.1) with
initial datum ¢(x,0) = ¥(x). From assumptions (1.3d) and (1.3f) it follows that there

ex1st positive constants §.  and §, such that |y (x,t)} < § and y (x,t) < -6
2 1+ 8 t 2 x 1

[
61

1
Xo a
in the region (2—,-:) x (0,5). let M = and define lz(t) by

lz(t) = Mt + xq.
In order to show that lz(t) is a supersolution in [0,;] consider the curve

B(t) defined implicitly by the equation {(B(t),t) = a - t, R(0) = xo. Note that

-1 - ‘l’t(S(t),t))
WX(B(t),t)
follows that for t e (0:*;'),

g (t) = < M. Hence B(t) < L (t) in (o,g). From Lemma 2.1 it

9(12)(t) > 8(B)(t) = a ~ ¢(B(t),t) = ¢ .

On the other hand,




€ lz(t) €
ote () = [ ar R(L,(t) ~ Lt - NAE <[ tarme .
0 ~£2(1) 0

Therefore, 0(2.2)(t) < 9(22)(1-.) for t e (o,%), which means that ).2(1:) is a super-

solution in (0, %]- /77




Section 3: Existence of s(t)

Throughout this section we assume that there exists linear functions 11(:) and
Lz(t) which are respectively lower and upper solutions in [0,T] for some positive
time T. Recall that s(t) is a solution of the integral equation (1.5) in [O0,T] if

and only if

o (s)(t) =8 (8)(t)
%o %

for 0 < to <t ¢ T. We prove the existence of a solution of (1.5) in [0,T] by

1 constructing a sequence of continuous, plecewise linear functions {sn(t)} with the
properties that sn(O) = Xq and, setting tj - ﬁz,

th(sn)(tj+1) = ot (sn)(tj+1) for J ® 0,eee,n =~ 13 0= 1,2,00.
This sequence of functions is shown to be equicontinuous and uniformly bounded.
Therefore, by the theorem of Arzela and Ascoli some subsequence of (an} converges

uniformly to a continuous function. This continuous function is shown to be a solution i

of the integral equation (1.5).

Lemma 3.1: For each pogsitive integer n there exists a continuous pilecewise linear

function sn(t), defined in [0,T], such that 21(t) < sn(t) < lz(t) and, setting

= 1T
4

n

[

Ot (sn)(t

3 j"") -etj(sn)(tj+1)' 3 =0,%,¢e0,n~=1; n=0,1,... .

Proof: Fix n. Set sn(O) = Xg and suppose that we have found points XgeXqrooo Xy

such that 21(tj) < xj < lz(tj

linear function connecting the points (xj,tj), then

), 3 =0,1,¢..,k, and, if sn(t) is the piecewise

°t (sn)(t

j = etj(sn)(tj+1): J= 0,100k -1,

+

{
For x € (11‘tk+1)'£ (t )), let

2" "k+1

sn(t) for t < t

a{x)(t) = 1 The line segment connecting (x,,t,) and

) (x,tk+1) for tk <t < tk+1 . "

-{5=




By induction the proof of the lemma will be complete once we have proven the existence

of a point x,,, such that "1(tk+1) € Xepq € lz(tk”), and

[] (a(xk‘_‘))(tk”) =8 (a(xH1))(tk+1). To prove the existence of Xyp4eq we first

%%
1. 1 - 1
let x 21(tk+‘) and show that Otk(u(x ))(tk+1) Gtk(a(x ))(tk#1) > 0. We then
2 2 _ 2
let x zz(tk+1) and show that 0%(a(x ”(tkﬂ) Gtk(a(x ))(tkH) < 0., Since
otk(u(x))(tk+1) - etk(a(X))(tk+1) is a continuous function of x it will then follow

that there must exist a point Xyt @ [x‘,le such that
(a(xH_1))(tH1) -8 (u(xH1))(tk+') = 0.

%

[)
tk 1

Note that al(x )(t) > 21(t) for t e (o,tk+1). From Lemma 2.2 it follows that
0(a(x1))(tk+1) > 0(!1)(tk+1)- From Lemma 2.1 it follows that
9(a(x1))(tk+1) - 9(11)(tk+1)- Therefore, since 21(t) is a lower solution,

1 1

¢(alx ”‘5«»1) - Blalx ))(tkﬂ) > 0(2,)(‘:,‘”) - 6(1')(tk“) > 0. Since
atx')(8) = s () for te (0,6,) 1t follows that o(atx'))(t) - O(alx"))(t,)

= o(sn)(tk) - GKsn)(tn) = 0. Hence,

e

- [o(u(x1)(t

8 (ax' Nt ) - 8 (alx"Ny, )
k

1
) = 8tatx e, )] - [olatx (e - otatx e ] >0 .

k+1 k+1

A similar argument shows that ¢ (a(xz))(t ) -6 (a(xz))(t ) < 0. From our
tk k+1 tk k+1
previous remarks this completes the proof of the lemma. V744
In order to apply the theorem of Arzela and Ascoli to conclude that a subsequence
of {sn(t)} converges uniformly to a continuous function we need to show that the

sequence {sn(t)} is equicontinuous. We now prove this to be true if T is chosen

sufficiently small.

) l'(T)
: Lemma 3.2: If T 1is chosen go that e T 4

% then the sequence {sn(t)} is
equicontinuous on [(0,T]}.

Proof: Let B be the reglon bounded by li(t), lz(t). t =0 and t = T. From
assumption (1.34) it follows that wx(x,t) < 0 in B. Choose 6‘ to be a positive

constant such that wx(x,t) < -61 in B. From assumption (1.3f) there exists a
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positive constant 62 such that I-\ut(x,t)l < 62 in B (see (4], Theorem 6, pg. 65).

Let M = sup K(%

§
() + (1,6 - 1) ana t= min(ﬁ,'t].
0<<t<T

1
Since each function un(t) is plecewise linear it suffices to show that the
derivatives s"\(t) are uniformly bounded whenever they exist. We first find a lower
bound on a,’l(t) for te (0,7 and n=0,1,2,.... In fact, suppose that p is a

positive integer such that pt < T. We show that sp(t) » -2P 6_2 for each n and
1

é t @ (0,pt) such that s}(t) is defined.
Suppose that this is not true. Then there must exist positive integqers m and

[
n such that 1 <m < p, s;(i) < 2" ?2- for some t € ((m - 1)E,mE), and

8 1
s"l(t) > -Zm-]' -5—2 for t < (m - 1)E. Since sn(t) is piecewigse linear we may assume
1 ) )
that for some integer X, s'(t) > 2" 2 for t < L, = 5!, and s'(t) < =20 2
n 6‘ n n 61

for t & (bk'tkﬂ)' We show that O(In)'(t) - e(sn)'(t) >0 for t e “"k’tkﬂ)' This
immediately leads to a contradiction because O(Sn)(tk) - e(sn)(tk) - O(sn)(tk”)
- 9(’1\)“:1“-1) = 0.

We firat estimate Msn)‘(t) for t @ “:k'tki—l)' Using {2.2) it follows that:

(m-1)t1

Msn)'(t) > [‘{ K(Sn(t) + !“(1),1: - ‘r)(sl_"(T) + sl“(t))d‘t

(ln--1)1':1

+ x(sn(t) - sn(r),t - 'r)(a"‘(r) - sr"(t))dt]

/
0
t
+{f K(s (t) + 8 (1),t - U8 (1) + 8! (t))ar
(llr-‘l)t:1 » n n 1
t

+ [ K(sn(t) - sn(r),t - r)(a;‘(ﬂ - s"‘(t))dr] = (1] + [II] .
(||-1)t:1

We show that (I] > 0. Recall that for €@ (0,(m - Nty {

m-1 62
" - -— ]
ln.T) > ~2 61 > .n(t). Hence

B R e L




>

(n—1)t.‘

(1 >g [2-"‘“):(-“(:) +8 (0.t~ 1)

s
- [s100) + ™ Exta o) - s (e - ‘l‘)]dt .
)

The right hand side is positive if for each < < (m = 1)ty

2
(ln(t) + ln(‘l‘))

-(t=7) -

4(t - 1)
28'(t) ¢\, ¢
2 (e - 072
(l;‘(t) - in('v:))2
w1 82, oIETT 4t - 1)
> [spit) + 2 T] —~
1 202 (e - 072
s (t)s (D) -1 62
_on ' m si(t) + 2 T
t-T 4
or e < 28’ (6) :
n
This is true because
2
; In(t)ln('\') _ z‘('r)
e - <e T o< -;—
by assumption, and
8
(e + Pl -6-2- 8
R TS IR I S |
2e'(¢) 2 s'(L)s 4’
n n 1

We have therefore shown that {x) > o.

A4

1) >
(u—i)t‘

Therefore, o(-n)'(t) > 2Ht,-|‘,(t)-

-18~

On the other hand,

2""(t)K(!1(t) + 11(1').(: - T1)41 ? Zst'\(f.)t1M .
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We now show that S(sn)‘(t) < ZHEsA(t) for t e (tk’tk+1)' This is true because
G(Sn)'(t) = -wx(sn(t),t)s;(t) - wt(ln(t),t)
< 613;(t) + 62 - 4Hts&(t) + 62

< 4Mts;(t) - zntsA(t) - 2Mts;(t) .

We have therefore shown that O(BH)'(t) > e(sn)'(t) for t € (‘k'tk+1)‘ As was

mentioned earlier this leads to a contradiction. Hence, the uniform lower bound on
s;(t) follows. Using a similar argument one can obtain a uniform upper bound on

sﬁ(t). In fact, if P is chosen so that PE < T then one can show that

1+ 62

sp(t) < 2P( ) for each n and t € (0,PE) such that s;(t) is defined (see [9]

s
for details). 1Fron our previous remarks this concludes the proof of the lemma. ///
Since the sequence {an(t)) is equicontinuous, and uniformly bounded by the lower
and upper solutions 11(t) and lz(t) on [0,T), the theorem of Arzela and Ascoli
guarantees that a subsequence, {snk(t)}, converges uniformly on {0,T) to a
uniformly Lipschitz function s(t). To simplify notation we write
{s  (©)} = {s (t)}. !

Lemma 3.4: s(t) is a solution of the integral equation (1.5) in (0,T].

Proof: Let ¢ be an arbitrary positive constant and choose t, € [0,T]). We show that

|0(s)(to) - 8(:)(t°)| < & by estimating, for sufficiently large n, each term of the
inequality
lots)(ty) - e(s)(to)l < lomit)) - O(sn)(tk)l
+ lo(s e - 6(s )t )] + |8(s )t ) - e(s)(to)l .

Here k is chosen so that to e (tk'tk+1)'

It follows from the construction of s (t) that |0(sn)(tk) -8(s ()l = 0. ,
Purthermore, because the function y(x,t) is uniformly continuous and the sequence of
functions {sn(t)} are uniformly Lipschitz continuous, it follows that

Ie(l“)(tk) - O(I)(to)l < § for n sufficiently large. It remains to show that
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IO(a)(to) - O(Qn)(to)l < § for n sufficiently large. Setting

A= s,(ty) - 8(ty), this is true because

%o s(t)
loer(ey) - eta (el = | ar [ Riste)) - £irg - mae
0 ~s( 1)
tk sn(r)
-f atf K(s (t) = &t = DAL
0 -8 (1)
n
0 s, (Tt -t ) +)
- |f ar | K(s (£ ) - &t - 1dE
tomty  s(THE -t )4)
ftk I—-n(t)
+ dat K(s (¢t ) - E,& - T)AE
0 Semtaen K k
tk a(t+t°-tk)+x
+ [ atf K(s () - E,t, - r)ag'
0 s (1)
n
' t
I k drt
* <lt, -t 1l +4 sup Is(1+t -¢t) -3 (0l -
k0 0<ret o 'k n 0 202(e -1)72
k K
£
<32

=

if n 1is sufficiently large. In the last inequality we used the fact that s(t) is a

Lipschitz continuous function and ltk - tol < %. /77




Section 4. Uniqueness and a Comparison Theorem

We have so far shown that if T 1is chosen so that there exists linear functions

£,(t) and zz(t) which are, respectively, lower and upper solutions in (0,T], and
-z‘ (T)/T
e <

ry then there exists a uniformly Lipschitz function s8(t)} which

satisfies (1.5) in [0,T]. The following Theorem demonstrates that the solution of

(1.5) is unique among uniformly Lipschitz functions.

Theorem 4.1: Suppose that a(t) and 8(t) are respectively lower and upper solutions
in [0,T1]- Then a(t) < B(t) in [O,T].

Proof: Note that we must have «(0) < x, < B(0). If, for example, a(0) > Xg, then

0

Y(a(0),0) < a. It follows there must exist some time, tge such that
Ppalt),t) <a-t for te (O,to). Therefore, O(a)(t) = a - Y(a(t),t) > t for t €
(O,to). On the other hand,
t a8( 1)

d(ad(t) = [ ar [ K(a(t) - E,t - 1)dE
0 -8(T)

t
<[ tar=t¢
0

for all t e R'. Hence, O(a)(t) > #(a)(t) in (0,tq), which contradicts the
agsumption that a(t) is a subsolution. A similar argument shows that it is
impogsible for B8(0) < L

If a(0) < B(0), then we must have a(t) < B(t) in (0,T). If not, we let
ty = inf{t:a(t) > B(t)}. Then a(to) = B(to) and a(t) < B(t) in (O,to). Lemma 2.1 now
implies that 6(0)(to) > 6(8)(t0), while Lemma 2.2 implies that O(G)(to) < O(B)(to).
Since a(t) is a subsolution and g(t) a supersolution, we now have

8(0)(to) < 0(0)(t0) < ¢(B)(to) < 6(8)(t0) < e(n)(to) .

This is an obvious contradiction.

Throughout the rest of the proof we assume that a(0) = g(0) = xo.

Suppose the lemma is not true, and let ty = inf{t]a(t) > f(t)}. Then,

alt) = g(t) for t € [o,tol. This is because, if a(t) < B(t) for some
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t e {0,t5], it would follow from Lemmas 2.1 and 2.2 that
O(u)(to) < 0(8)(to) < 9(8)(t°) - 9(0)(t°) .
This, however, contradicts the assumption that a(t) is a lower solution.
We prove the lemma by showing that there exists some ¢t > t; such that
al{t) > B(t) and &(a)(t) < ¢(B)(t). This leads to a contradiction for the following
reason. Since a(t) > f{(t), and a(0) = B(0), it follows from Lemma 2.1 that
8(a)(t) > @(BI(t). If it is also true that &(a)(t) < &(B)(t), then, since B(t) is l

an upper solution, &(a)(t) < &(B)(t) < ©(8)(t) < B(a)(t). This, however, contradicts

the assumption that a(t) is a lower solution on (0,T].

Por t > t;, let c(t) = alt) - B(t). Choose E > t, such that e(¥) > 0 and

e(t) < e(t) in (0,%). Then,

- t (1) - -
o(g)(t) = [ ar | K(B(t) - £/t - T)AL
0 -B{1)

t B(T)I+e(t) - -
=[ atf . Klalt) - &t - 14
0 =B(t)+e(t)

- %o B(T)+e(t) - -
= da)(t) + | [ ar [ K(a(t) - £,t - DAE
0 a{ 1)

0 ~B(T)+e(t)

- [ atf K(alt) - £,E - x)dg]
0 ~a(1)

| axf K(a(t) - £t - ndE

t B(T)+e(t)
+
t a{ 1)

t -8(T)+e(t) - -
-f atf K(alt) = E,& - 1)dE

to -a{1)

= 8(a)(t) + (1] + (111 .
Recall that we wish to choose E o that &(8)(t) > &(a)(t). Note that (1] > 0.

This is because, if (£,7) @ (0,e(t)) x (0,ty), then la(t) = (B(1) + )]
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< |a(®) + B(1) - £], and, therefore, K(a(t) - (B(1) + £),€ = 1)

> K(a(t) + B(T) = £, - 1).
To complete the proof of the
rewrite (II] as
ttm = [ _ [ Kla(®) -
A_(t)
1
vhere A,(%) = ((E.T):to <t<t,

AyE) = {(E, 1)y < T <R,

Let A (%) = inf _ K(a(t)
(£, 1)€A(E)
A (E) = sup _ K(a(t)

(E,r)eAz(t)

lemma it remains to choose t so that [II) > 0. We

£, - ndear - [ _ [ K(a(t) - £t - nagdr
AL (E)

alt) < £ < B(1) + e(t)),
~al1) < £ < -B(1) + e(t)) .

-t -1,

- EIE - T.

Then (II] > A1(E)u(h1(1-:)) - XZ(E)u(Az(t-:)) where y 1is Lebesgue measure on .

We now show that 1lim A _(t) = » and 1lim ) _(t) = 0. The first limit follows

tit !

tit 2

because both a(t) and e?c) are uniformly Lipschitz continuous. That is, there

exists a constant L such that if ¢t > ty and e{(t) > 0, then

la(t) - €| < L(t - 1) for all

K(a(t) - §,t - 1) =

Hence A1(t) = inf K(a(t)
(g, T)eA _(t)

(E,1) € A1(t). Therefore, if (£,t1) € A1(t), then

2
e _lat) - &)
e (T . At-
T I
211/2 (t ~ ‘t)/2
2
-(t=-1) - L (t=-1)
e 4
>y T, e
2v'2 (r - 1)72
2
(t-t ) L
e 0 b (t-to)
>y e .
272 (¢ - ty) 2

- £, = 1) + » as t&to.

On the other hand, )‘z(t) +0 as t ¢+t for the following reason. If

0

(E, 1) € AZ(T), then E < 0. Hence, a(t) - £ > a(t). Therefore, for

(E,1) € A (L),

T

SPTITR LS o TG A s ORIy,
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2
alt)
(=1 ~ e -0
K(alt) - E,£ - 1) Al 7, A
27’2 (¢ - )72
From this it follows that ) (t) = sup K(a(t) - £, = 1) *0 as t ¢ t. .

0
2 (€, T)EA_(t)
Now choose t, > t, 8o that e(t1) >“0, e(t) < e(t1) for t e (ty,ty), and
x‘(t) > 4A2(t) for t e (to,t1). Let h(t) = g(t) + E— e(t1). We consider two
1

cases.

Case 1: Suppose there exists t @ (tn,t1) guch that af{t) < h(t) for all ¢ < t.:.
and aft) = h(E). Let B(Y) = ltx,trsey <& < £7 hi(t) < x < B(t) + e(E)}. Then
B(t) C A(E), and u(B(t)) = % e(E)E. Therefore, wu(a (%)) > % €(E)t. On the other
hand, u(Az(E)) < 2e(£)t. It now follows that
- - - - . - 1 - - - - - - -
[II) > A (B)UA (B)) = L(E)u(A (E)) > 4h,(t) 5 e(t)t = A, (£)2e(t)t = 0 .

Case 2: Suppose there exists a sequence {tk} such that tk + to, a(tk) > h(tk),

and €e(t) < e(tk) for t < ty .

Let L be a uniform Lipschitz constant for both a(t) and B(t). Choose k so
sLt

that X1(tk) > A (tz).

e(t,) 2

Let

51(\'.) = -L(t - to) + u(to) for t > to B

62(t) = L(t =~ to) + a(to) for t > to R

Q = {(x,t)l&z(t) <x < 6‘(t) + s(tk), t. <t} .

0

1 2 1 2
Then A1(tk) D20, and p(Q) = e [e(tk)] . Theref:te, u(A1(tk)) > L [e(tk)] . As
)tk. Note that e(tk) > X e(t1). This is because

¥ 1 £

X
a(tk) > h(tk) = S(tk) + t—]_ e(tll, and hence, a(tk) = u(tk) - E(tk) >

before, u(Az(tk)) < 2¢e(t

t_1 c(t1).
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Letting € = t, 1t now follows that
[r1) > Al(tk)u(h‘l(tk)) - xz(tk)u(az(tk))

SLt1 1 2
> ETE:T Xz(tk) a [e(tk)] - Xz(tk)ZE(tk)tk

2
Xz(tk)[e(tk)l - Ze(tk))‘z(tk)tk

t
k
Az(tk)e(tk) t e(t‘) - 2e(tk)kz(tk)tk

- 2e(tk))‘2(tk)tk - ZE(tk)Xz(tk)tk =0 .

Therefore, [II] > 0, and the proof of the lemma is complete. /77

Note that because f(v) 1is discontinuous we cannot immediately apply the standard
comparison theorems to solutions of Equation 1.1. We can, however, prove the following
result which is an application of the preceding theorem.
Theorem 4.2: Suppose that the functlons v¢({(x) and wz(x) satisfy the conditions
(1.3) with ¢1(x) < ¢2(x) in R, and v1(x.t) and v2(x,t) are the solutions of
Equation 1.1 with initial data y,(x) and v,(x). Furthermore, suppose that the
curves 01(t) and sz(t), given by v1(o1(t),t) = a, 01(t) > 0, and

vz(oz(t),t) = a, oz(t) > 0, are well defined and continously differentiable in

[(0,T). Then, 01(t) < oz(t) in [OfT], and v1(x,t) < vz(x,t) in R x [0,T].
Proof: We first show that 01(t) < cz(t) in [0,T]. Let w1(x,t) and wz(x,t) be
solutions of the linear differential equation

‘E = ‘kx -

with initial data ¢1(x) and wz(x), respectively. Then 01(t) is a solution of the
integral equation

(4.1) a - w1(a1(t),t) = 0(01)(t) in (o0,T) ,
while oz(t) ig a solution of the integral equation

a - 4, (g,(t),8) = 8(g,)(t) in (0,T) .
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Because ¢H(x) < 9a(x) in R it follows from the usual comparison theorem for
parabolic equations that 01(x,t) < vztx,t) in R x (0,T). Thus,

01(01(t),t) < vztai(t),t) in (0,T), and, from (4.1),

a- wb(a|(t).t) < 0(61)(t) in (0,7T) .
That s, a,(t) is a lower solution on (0,T] for Equation 1.1 with initial data
#5(x). Prom Theorem 4.1 it follows that 01(t) < az(t) in (0,T).
We now show that v (x,t) < vy(x,t) in R x (0,T). First assume that

x > az(t). Then, since o0,(t) < oz(t), it follows that

v‘(oz(t),t) <as= vz(cztt).t)- We also have that v1(x,t) < a ana vz(x,t) < a
for x > g,(t), t e (0,T). Therefore, for x > g,(t), both v,(x,t) and v,(x,t)
satisfy the linear differential egquations

Ve = Ve = Voo

Since v4(x) < pa(x) it now follows from the usual comparison theorem for parabolic
equations that v,(x,t) € vo(x,t) for x > az(t), te (o0,T).

It a‘(t) < x < oz(t), then v,(x,t) <ac< vz(x,t). Finally, if x @ (0,01(t))
then both vyi(x,t) and vz(x,t) are greater than the parameter a. Thus, they both
satisfy the linear differential equation

Ve " Vg =V F 1.
Since v‘(o1(t),t) =a < vz(a(t),t) and  v¢,(x) € ¢y(x), it foilows that
vylx,t) € vy(x,t) for x @ (0.0'(t)). t e (0,7).
We have now shown that v1(x,t) < vz(x,t) in R x (0,T). Since

Vi =x,t) = vk(x,t), kX = 1,2, the result follows. /777
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Section 5. Regularity of s(t)

In this section we prove that s(t) e c'(o,r) and s8'(t) is a locally Lipschitz
continuous function. 1In the previous section we showed that s(t) is a uniformly
Lipschitz continuous function. Hence, there exists a positive constant M such that
Is(ty) = s(tg)l < Mley - t4l for ¢4, ty € (0,T), and s'(t) exists almost
everywhere in [0,T). We first prove the following preliminary result.

Theorem 5.1: Assume that tg 18 chosen so that 8'(t,) exists. Then positive
congtants € and H1 can be chosen so that if It1 - tol < €, then there exists a
Lipschitz continuous function a(t), defined on [o,t1 + ¢], such that:

(a) a(t) = s(t) in [0,t,)

(o) s’ (ty) - a'(t:)l < Myl = gyl

(c) alt) 1is a lower solution in [0,t, + €] .
Proof: Por t, sufficiently close to t;, we define the function a(t) as follows.
FPor t <€ t, let a(t) = 8(t), and for t > t, define a(t) implicitly by

1

(5.1) 9t1(a)(t) 'eto(")(to + (t - t,)) + Ylt1 - tol(t - t1)

where the constant vy is to be determined. Since qx(x,t) 0 in R" x®" the

implicit function theorem guarantees the exisgtence of a(t) in a neighborhood of
tye Since s'(to) exists it also follows that a'(t:) exists. The proof of Theorem
S.1 {8 now broken up into a few lemmas.

Lemma 5.2: There exist positive constants e1, K1, and My such that if vy > K1

+
and |ty - tol < g then 0 < 8'(ty) - a'(t1) < H'Iti - tol.

1!
Proof: Note that

ey - RCTCRPLIS ey s Y (80E ) kL) = Y (8(E D)
a it ROCRIEN) 0 v (s(t ) e
Ylt'-1 - tol

+ ———,
Wx(s(t1),t1)
The result now follows because ¥(x,t) 1is an infinitely differentiable function in

=27~
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R’ x l’, wx(l(t).t) is negative and bounded away from zero in (0,T), and s(t) 1is a
uniformly Lipschitz continuous function.

Lemma 5.3: let ¢, be as in the preceding lemma. There exists a positive constant

1

K, such that if It‘ - tol < e, and y > K, then

1 2
- - X -
0(a)' (t)) - o(8)'(t ) > - o5 e, - ¢ .
Proof: From (2.2) it follows that
*o
0(0)'(t:) - ) (e) = [ I K(aft,) - E,t,) - Kslty) - E,to)d%]
-xX
0

t
1
+ [I K(alt,) - a(n),t, - Dla'(1) - a'(t:)]d'r
0

%o

-({ K(l(to) - l(t),to - is'(1) - l'(to)]d'r]

t
1
+ [ [ Xalt) + a0t - Dia'(D) + a'(t])lar
0

)

- (J; X(s(t)) + 8(1),t; - DIs' (D) + l'(to)ldt]
= [(A] + [B] + [C] .
Since K(x,t) is infinitely differentiable for t > 0, it follows that there
exists a positive constant D1, independent of vy, such that
1a] > -Dylty = t4l
We now consider ([B]. Assume that t1 > to. The case t1 < to is similar.

S8ince a(t) = s(t) for t<t1 we may rewrite [B] as

t
0
(B] = [ (K(s(t,) - s(1),t, - 1) - Kis(t)) - s(1),t; - VIs'(n)dr
0

t

0
+ g [R(8(ty)-8(7),t ~T)8" (£ )-K(a(t,)-8(1),t ~1)a’ (t])]d1
4
s [ Rs(t,) - s(1,t, - N (D - a'(t]))dT .
t
0

~28=
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Recall that |s*(t)| < M wherever s'(t) exists, and, from the preceding lemma,

c'(t:) < s'(to). Therefore,

t
(B] > -2u [ IK(s(t)) ~ s(1),t, = ©) = K(s(t)) = s(D),t; = D]dr
0
t1
-2M [ K(s(t,) - s(1),ty - Tt

%o

> -D2|t1 - to|

for some positive constant Dy, independent of Y.
Similarly,
[C] > -Dylty = 4l
for some constant Dy independent of y. 1In fact, this computation is easier because
x(a(t1) + a(t),t‘ - T and K(s(ty) + s(r),to - 1) are smooth functions of .
Choosing K, = Dy + D, + Dy the result follows.
Lemma 5.4: There exists a positive constant €, such that if It1 - to| < €, and

Y>K then a(t) is a lower solution on [0,t, + ezl-

2l
Proof: Since a(t) = s(t) on [0,t1] it follows that
(a)(t) = B(a)(t) on [0,t,] .

It follows from Lemma 5.3 that there exists a positive constant €, such that if

and y > K, then

0 ¢t-ty<e, Ity ~tyl <e )

2'

MHa)(t) - 0(0)(t1) s)(t_ + (t - ¢t )) - &s)(t )
. 0 1 0 e -t
t -t t -t Y€ " %

(S

That is,

ot1(a)(t) - oto(s)(t0 +(t -t > -ylt1 - tol(t - :1) .
On the other hand, from the definition of «a(t),

et1(a)(t) - eto(s)(c +(t -ty = -vle, - lle -t ) .
Since Gto(s)(to + (t ~ ty)) = Oto(s)(to + (t - t1)) it follows that

=20~
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ot‘(a)(t) > 9t1(a)(t) on [t1ot1 + 52] ’

and, therefore, a(t) is a subsolution on [0,t, + ezl.
This completes the proof of Theorem 5.1. VZd4
Theorem S5.5: s(t) @ c'(o,r). Purthermore g'(t) is a locally Lipschitz continuous
function.
Proof: Suppose for the moment that t, is chosen so that s°'(t;) exists, and let
al(t), &, and M, be as in Theorem 5.1. From Theorem 4.1 it follows that
a(t) < s(t) 1in [0,t, + €]. Therefore, if -'(t,) exists, then
s'(ty) > a'(t:) > -'(to) - n‘|t1 - toi. From the proof of Theorem 5.1 we conclude that
€ and M, may be chosen to depend continuously on ty. Therefore, we may choose
c'> 0 such that if l'(to) and l'(t,) both exist, then .'(t,) > s'(to) - M,It, -
tol, and, switching the roles of t, and t,, s'(t,) > s'(ty) ~ H1It1 - tol. This
implies that if s'(t) exists for all t € (0,T), then s'(t) is a locally Lipschitz
continuous function. So it remains to prove that s'(t) exists in (0,T).
Let t, now be any point in (0,T). Choose ¢ and M, such that i
|t1 - to| + |t2 - tol < e, and s'(ty) and s'(t,) both exist, then
Ia'(t1) - s'(tz)l < H1|t1 - tzl. Let {tn}, n=12..., be a sequence which
satisfies
a) s°'(t,) exists for each n

1 _-(n+1)
b) |tn-t°|<H2 .

1
Let P, = 8'(t ). Note that {Pn} forms a Cauchy sequence. This is because if
n >m, then Itn - cml < %: 27", and, therefore, Is'(tn) - a'(tm)l <
< H,Itn - enl ¢ 2°", Hence, P = 1lim P, exists. We show that s'(t,) = P.
ne+e
Let 1n> 0 be given and choose n so that 270 ¢ g ana |P-pP | < g. f t
is chosen so that |t - tol < %— 27(n*1) ana 8'(t) exists, then |t - tnl < |t - tol
1
+ 0ty - e 1 < %: 2"  and therefore, |s'(t) = Pl < Myle - t,l < 2"™, Hence,
Is'(t) = 2| < |s'(e) - P | + [P, ~ Pl < n. 8Since s(t) is absolutely continuous this

implies that

-30=
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[ s*(ndr
l(t)-l(to)-Pl- t, -P‘(P*'n)(t-to)-l’-n -
N t-to t-to t-to 3

s(t) - -(to)
= P. /77

* -
Therefore s (to) 1im e to
0
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Section 6. Threshold Results

We have so far proven the following result.

Lemma 6.1: Suppose that there exist linear functions 21(t) and lz(t) which are

respectively lower and upper solutions on [0,T]. Purthermore, assume that T < % and
.-l‘(T)/T < e Then there exists a unique continuously differentiable function

s(t) which satisfies the integral equation (1.5) in [0,T]. Moreover s'(t) is
locally Lipschitz continuous in (0,T).

In this section we find sufficient conditions on the initial datum, ¢(x), for
8{t) to exist in l+ and 1lim g(t) = o,

tw

In Section 2 we discussed the existence of lower and upper solutions. It was
shown that an upper solution always exists in [0,%], and there exist constants §
and r such that if Xy > 6, then a vertical line 21(t) - ;, where X > Xg - T, is
a lower solution on R'. We now show that if Xy > 6 then s(t) can be extended to
{T,2T]. An induction argument can then be used to show that s(t) exists in

By Lemmas 1.2 and 6.1 the solution, v(x,t), of the equation (1.1) exists in
R x [0,T]« To show that s(t) can be extended to the interval (T,2T] we wish to
apply Lemma 6.1 with ¢(x) replaced by v(x,T). To do this it is necessary to show
that v(x,T) satisfies the assumptions (1.3).

Clearly v(x,T) € c'(l). Replacing x by -x in equation (1.7) and using the
assumption that ¢(x) = ¢(-x) it follows that v(x,T) = v(-x,T) in R. Applying the
maximum principle in the regions (x| < s(t) and |x| > s(t) separately it follows
that v(x,T) @ [0,1] in R. Moreover, since g'(t) is a Lipschitz continuous
function it follows from the Schauder estimates (see [4], page 65) applied to the
regions |x| < s(t) and |x| > s(t) separately that v, (x,T) is a bounded
continuous function except possibly at x = s8(T). Pinally, the maximum principle
applied to ve(x,t) dimplies that v,(x,T) < 0 in ®'. We can now apply Lemma 6.1 to
conclude that s(t) can be extended to the interval ([T,2T].

This completes the proof that if xq > 9, then a(t) exists in R'.

Furthermore, s(t) > Xg = T in R* where r was defined in Lemma 2.6. It remains to
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show that there exists a positive constant 60 such that if x; > eo then

1im s(t) = =, This is done by constructing a particular function P(x) which we show
tre
to be superthreshold. We then prove that if Xy is sufficiently large then

v(x,T) > P(x) for some T. From Theorem 4.2 it then follows that ¢(x) 1is

superthreshold. i
In order to define P(x) note that the ordinary differential equation

(6.1) P* + £(P) = 0

has the first integral

1

(6.2) 3 ()2 + P(P) = k

P

where k is constant and P(P) = f f(u)du. Choose K € (a,1) so that F(K) = 0 and
0

suppose that 8 @ (x,1]). Then P(g) > 0 and P'(B8) = £(B8) > 0. Define the length

] Yy
by = | {(2r(8) ~ 2P(a)}” "24q .
0

Por Ix} < bB let P(x) be the solution of (6.1) with first integral
3 @92+ pe) = r(B)
and which satisfies the condition P'(0) = 0. Then P(x) > 0 in
(-bB,bB), P(x) = P(-x) and P(ba) - P(-bB) = 0. Define P(x) =0 for Ix| > be. We
now show that P(x) is superthreshold. Our proof follows Aronson and Weinberger (2,
Proposition 2.2].
lemma 6.2: Let u(x,t) be the solution of equation (1.1) with initial datum P(x).
Then 1lim u(x,t) = 1 for each x @ R.
toom

Proof: The proof is broken into two parts. We first show that 1lim v(x,t) = t(x)
t 4o

uniformly on each bounded interval where Tt(x) is the smallest solution of (6.1) which

satisfies the inequality
{x) » P(x) in R.

We then show that 1(x) = 1.
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Prom the comparison theorems we conclude that u(x,t) @ [0,1] and u(x,t) > P(x)
in R x R'. Hence, for any h > 0 we have u{x,h) > u(x,0) in R. PFrom Theorem 4.2
it follows that for any h > 0, u(x,t + h) > u(x,t) in R x R Therefore, for any

| x, u(x,t) is a nondecreasing function of t which is bounded ahove. Therefore the

limit T1(x) exists. Clearly t(x) @ [0,1] and 1(x) > P(x) in R.

We now show that T(x) is a solution of (6.1) in R. Define o(t) by
u(a(t),t) = a, ol(t) » 0. Note that o(t) is a nondecreasing function. Hence
1im o{t) = x exists for some x @ (0,],

trm
Note that for arbitrary n > 0 and (x,t) € R x l*,

® t+n o(T)
(6.3) u(x,t +n) = [ K(x ~ Et)u(E,mAE+ [ At [ K(x - £,t + n - 1A .

! . - n -o(T)
By means of the substitution s = t - n in the second integral on the right hand side
of (6.3), u({x,t + n) can be rewritten in the form

L) t o(s+n)

alx,t + n) = [ K(x = E,t)u(E,maAE + [ ds K(x - £t - 8)4E .
- 0 -ag(s+n)

v T®

»

Since u(e+,n) ¢ 1(+) it follows from the monotone convergence theorem that

@ t x
(6.4) x) = [ K(x - E,£)T(E)AE+ [ as [ Kix - £t - 8)df
-co 0 -X

for each x @ R.

From this representation we conclude that 1t is continuous. Since the

; convergence of the continuous functions u to 7T 1is monotone it follows from Dini's

theorem that u + t uniformly on bounded intervals., We now show that T(x) satisfies

the steady state equation (6.1) in R.

Pirst assume that |x] < X. We rewrite (6.4) as

- L)
t

wWx) = [ K(x = EL)UEAE - [ as [ _ _ K(x =~ gt - e)dE+ T~ e .
-0 -t R\l-x;x)
-34=
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It then follows that

™(x) = L K (x - Eelugdae - [ as [

K _(x - §,t - 8)4§
-co R\[-x,x] xx

and

d @ @
0= tx) = K(x=-Ee)(E)aE- [ as [ _ _
ae o - R\[-x,x]

K (x - &t - 8)dE + et

valid for arbitrary t > 0. Since K(x,t) 1is a solution of the differential
equation K, = K, - K it follows that 1" + £(T) = 1" - 1+ 1 = 0 for |x] ¢ X. A
similar argument shows that 1" + f(1) = 0 for Ix| > x.

Now if q(x) is any solution of (6.1) with g & [0,1] in R and P(x) < q(x)
in R then, from Theorem 4.2, it follows that u(x,t) < q(x) for each x € R. :ence

7(x) < q(x) so that 1 {is the smallesat solution with these properties.

Having proven that 1t(x) is a solution of the steady state equation (6.1) it
remains to show that <t = 1. Suppose that there exists x, such that vy = t(x1) < 1.
Then 1(x) satisfles (6.2) with k » F(y). Hence {k - r(q)}' B& is defined on

{0,Y). Therefore 1{(x) is implicitly given by

x=x 7 fY 12{k - t(u)}l-1/2du
T
where the sign is determined by t'(x1). It follows that 1(x) becomes zero with
t* #0 at a finite value of x, 8o that T cannot be a nonnegative solution
q" + £f(q) = 0 for all x. This contradiction shows that 7(x) = lim u(x,t) = 1 for
each x @ R and hence P(x) is superthreshold. 77/ e

The following result completes the proof of Theorem 1.1.

Theorem 6.3: Choose a @ (0,%). There exists a constant eo such that if ¢(x)

satisfties (1.3) with x, > Bo then ¢(x) 1is superthreshold.




Proof: Recall the constants 6 and r defined in Lemma 2.6 and bB' P(x), uix,t)
defined in this section. Let eo = max{e,b8 + r}. We show that v(x,T) > P(x) in
R for some T. Theorem 4.2 then implies that v(x,t) > u(x,t - T) for x @R, t > T.

Since 1lim u(x,t) = 1 for each x @ R it then follows that y¢(x) is superthreshold.

t+m
Since x, > nax{e,bB + r}, Lemma 2.6 implies that s(t) > b8 in ®.
Therefore, v(x,t) > a for |x|{ ¢ b . From the maximum principle we conclude that

8
if z(x,t) 1s the solution of the initial-boundary value problem

+
=z, ,~-z+1 for |x] <b_, teRrR ,

z, 8

z(x,0) = (x) for |x| < bB R

(b, t) = 2(-b,t) =a in R,
then v(x,t) > z(x,t) for |Ix| < bB' te R'. From Friedman (5, page 158) it follows
that 1lim z(x,t) = q(x) where qgq(x) 1is the solution of the steady state equation

o q" - g+t t =0 for x| < bB R
Q(-be) = q(be) - a ,

Therefore, there exists T such that v(x,T) > g(x) for |x| < bB. It is also true,
however, that qf{x) > P(x) for Ix]| < b_. This is because if <y is chosen so that

B
P(Yy) = a, vy> 0, then P(x) satisfies the steady state equations

P"~-P+1=0 for |Ix| <y
with
P(~y) = P(y) = a .

Since y < b, it follows that P(x) < q(x) for Ix| < y. On the other hand, it

8

x e (y,ba) or x € (-bB,-Y) then P(x) < a < q(x).
We have now shown that for |x| < bB' P(x) < q(x) < v(x,T). Finally, 1if
|x] > bﬂ then P(x) = 0 ¢ v(x,T). 77/

The following results will be needed in a later paper when we study the full
system (1.2).
Theorem 6.4: Choose a @ (0,%) and let eo be as in Theorem 6.3. Suppose that
d4< 1t and ry > 0. There exists T > 0 such that if v(x) satisfies (1.3) with

xq > eo, then v(x,t) > d for |x| ¢ ry, £ > T

-36~-




Proof: Let P(x) be as in Lemma 6.2. It was shown in the proof of Theorem 6.3 that
for some time '1'1, vix,t) > P(x) for x €@ R, t > 1'1. If u(x,t) is the solution of
(1.1) with initial datum P(x), then, from Theorem 4.2., it follows that

v(x,t + T;) > u(x,t) in R x R'. Since lim u(x,t) = 1 for each x @ R, and

t o
ux(x,'r) <0 in R x R', there exists T, such that u(x,t) > 4 for

Ixl < ry, t>T,. Hence, if t > T =T, +7T,, and |[x| <r;, then
vi{x,t) > u(x,t - T,) > 4. 77/
Corollary 6.5: Choose a @ (0,:}) and K < % - a. Assume that 4 < 1 - K and
r, > 0. Then there exist constant 6, r, and T such that if ¢(x) satigfies (1.3)
with xp > 8, and v(x,t) is solution of the Adifferential equation:
vt-vxx+£(v) - X in lxl*,
v(x,0) = ¢(x) ,
then v(x,t) >4 for |x| < ry, t > T. Furthermore, the curve s8(t), given by
v(is(t),t) = a, a(0) = X ia a well defined, smooth function, s8'(t) 1is locally
Lipschitz continuous, 1lim s(t) = =, and s(t) > Xy = r in r.
Proof: Let u(x,t) = v::t) + K. Then u(x,t) is the solution of the differential
equation:
ut=uxx+f1(u) in Rxll"', i
u(x,0) = ¢(x) + X in R .
Here,
~u for u<a+K
£,(u) =
1~-u for u>a+K.

Since a + K ¢ %, the result now follows from applying Theorems 1.1 and 6.4 to i

u(x,t). 177/
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